
Function Parameters Description Examples
if 

as 

do value of last parameter (do +1.0 +2.0) = +2.0

df one name tell if function is defined (df add) = (yes), (df foobar) = (no)
is name and value of any type tell if value has a type described by name (is numb +2.0) = (yes), (is numb "alfa beta") = (no)
inc one number number plus one (inc +2.0) = 3.0, (inc -2.0) = -1.0
dec one number number minus one  (dec +2.0) = +1.0, (dec -2.0) = -3.0
add two numbers sum of these numbers (add +12.0 -3.0) = +9.0
sub two numbers difference between numbers (sub +19.0 +4.0) = +15.0, (sub +19.0 -2.0) = +21.0
mul two numbers multiplication of these numbers (mul +2.0 +3.0) = +6.0
div division of numbers (div +3.0 +2.0) = +1.5
rnd one number number rounded to integer (rnd +2.1) = +2.0, (rnd -2.9) = -3.0
flo one number biggest int not bigger than number (flo +2.9) = +2.0, (flo -2.1) = -3.0
cil one number smallest integer not bigger than number (cil +2.1) = +3.0, (cil -2.2) = -1.0
min  none or two numbers (min) = +0.00000000000000001, (min +1.0 -2.9) = -2.9

max none or two numbers 

ops one number number with opposite sign (ops -2.0) = +2.0, (ops 0.0) = 0.0
abs one number absolute value of number (abs +1.0) = +1.0, (abs -2.9) = +2.9
zer none or one number 0.0 for no parameters or if number is zero  (zer) = 0.0, (zer +2.0) = (no), (zer 0.0) = (yes)
pos one number is number positive?  (pos +2.5) = (yes), (pos 0.0) = (no), (pos -2.0) = (no)
neg one number is number negative? (neg +2.0) = (no), (neg 0.0) = (no), (neg -2.0) = (yes)
equ two numbers are numbers equal?  (equ +2.0 +1.0) = (no), (equ +2.0 +2.0) = (yes)
gre  two numbers  is first number greater than the second one?  (gre +2.0 +1.0) = (yes), (gre +1.0 +2.0) = (no)
les two numbers is first number less than the second one?  (les +2.0 +1.0) = (no), (les +1.0 +2.0) = (yes)
yes none boolean value "true", "yes" (yes) = (yes)
no none boolean value "false", "no" (no) = (no)
not one boolean  negation of boolean value (not (yes)) = (no), (not (no)) = (yes)

any number of pairs boolean 
and value (condition, value for 
true), and last value (when all 
conditions false) 

evaluates condition; if true, then evaluates following 
expression; if false then skips expression, and 
evaluates following condition; if all conditions fail 
then evaluates last expression  

(if (yes) +1.0 +2.0) = +1.0, (if (no) +1.0 +2.0) = +2.0, (if 
(no) +1.0 (yes) +2.0 (no) +3.0 +4.0) = +2.0, (if (no) +1.0 
(no) +2.0 (yes) +3.0 +4.0) = +3.0, (if (no) +1.0 (no) +2.0 
(no) +3.0 +4.0) = +4.0, (if +12.0) = +12.0

any number of pairs name and 
value, and expression to 
compute 

computes values and assigns them to names; then 
computes expression which can use these names 
as precomputed values 

(as a +2.0 (mul (a) (mul (a) (a)))) = +8.0, (as a +2.0 b 
+3.0 (min (mul (a) (b)) (div (a) (b)))) = 
+0.66666666666666667, (as +4.0) = +4.0

any types, any number, at 
least one 

two numbers, second not zero 

mininimum representable positive number for no 
parameters or smaller number out of two  
maximum representable number or bigger number 
out of two 

(max) = +99999999999999999.9, (max +1.0 -2.0) = 
+1.0



and two booleans logical "and" of these (and (yes) (yes)) = (yes), (and (no) (yes)) = (no)
or two booleans logical "or" or these (or (yes) (no)) = (yes), (or (no) (no)) = (no)
numb one text get number from text, parse number from text (numb "0.0") = 0.0, (numb "-2.0") = -2.0
name one text or one node of tree convert text to name or get name from node of tree 

text one number or one text text representation of number or name (text +2.34) = "+2.34", (text alfa) = "alfa"
leng one name or one text length of name or text, number of characters (leng alfa) = +4.0, (leng "alfa beta") = +7.0
same two names or two texts does these names or text look the same?  (same alfa alfa) = (yes), (same "alfa" "beta") = (no)
bfor two names or two texts does the first one sort before the second one?  (bfor alfa beta) = (yes), (bfor alfa aaaa) = (no)
aftr two names or two texts does the first one sort after the second one (aftr alfa aaaa) = (yes), (aftr alfa beta) = (no)
escp one text escape special chars in text (escp "a\"b\\c") = "a\\\"b\\\\c"
unes one text unescape special chars in text (unes "a\\\"b\\\\c") = "a\"b\\c"
uppr one name or one text convert letters to uppercase (uppr Alfa) = ALFA
lowr one name or one text convert letters to lowercase (lowr "ALFA beta") = "alfa beta"
head beginning of text or name (head alfa +2.0) = al, (head "alfa beta" +6.0) = "alfa b"

tail get ending of text or name (tail alfa +2.0) = fa, (tail "alfa beta" +6.0) = "a beta"

join two names or two texts join names with underscore, or concatenate texts 

part two names or two texts does first one have a part as the second one (part alfa lf) = (yes), (part alfa aa) = (no)
indx two names or two texts get index of part  (indx alfa fa) = +2.0, (index alfa a) = 0.0
ptrn one text is text valid pattern (regular expression)?  (ptrn "ab*c") = (yes), (ptrn "ab*[") = (no)
subs one text number of subespressions in pattern (subs "a(lf)a") = +1.0, (subs "a(l(f(a)))") = +3.0
mtch 

msta same as mtch starting index of matched text or name 

mend same as mtch ending index of matched text or name 

new none new, empty tree (object) (new) = (tree ...)
ref two trees or two nodes of tree does both reference the same place in memory?  (ref (new) (new)) = (no), (as t (new) (ref (t) (t))) = (yes)
any one tree are there any nodes in tree?  (any (new)) = (no), (any (ins (new) alfa +1.0)) = (yes)
qty  one tree number of nodes in tree (qty (new)) = 0.0, (qty (ins (new) alfa +1.0)) = +1.0

(name "alfa") = alfa, (name (root (ins (new) alfa +3.0))) 
= alfa

one text or one name, and 
one number 
one text or one name, and 
one number 

(join alfa beta) = alfa_beta, (join "alfa" "beta") = 
"alfabeta"

one name or text, one text, 
optional number  

matches regular expression against text or name; 
number tells what subexpression to look at (if not 
present looks at whole pattern) 

(mtch alfa "a.*a") = (yes), (mtch alfa "a(lf|xy)a" +1.0) = 
(yes)

(msta alfa "a.*a") = 0.0, (msta alfa "a(lf|xy)a" +1.0) = 
+1.0
(mend alfa "a.*a") = +4.0, (mend alfa "a(lf|xy)a" +1.0) = 
+3.0



def one tree and one name is node of given name defined in tree?  

ins 

del  one tree, one name 

set 

get 

root one tree root node of tree (top of AVL tree) 

frst one tree frst (leftmost) node of AVL tree 

last one tree last (rightmost) node of AVL tree 

left one node of tree left child of node or (void) if not defined  

rght one node of tree right child of node or (void) if not defined  

next one node of tree 

prev one node of tree 

vlue one node of tree value of given node 

tree one node of tree tree the node belongs to  

main none 

read none 

back (as r (read) (do (read) (back (r)) (read)))+1.0+2.0 = +1.0

(def (new) alfa) = (no), (def (ins (new) alfa +1.0) alfa) = 
(yes) 

one tree, one name, and one 
of any type 

inserts into tree new node with given name and 
value; returns tree; error if name already defined 

(ins (ins (new) alfa +1.0) beta +2.0) = (tree alfa +1.0 
beta +2.0)

deletes from tree node of given name; error if node 
not defined 

(del (ins (ins (new) alfa +1.0) beta +2.0) alfa) = (tree 
beta +2.0)

one tree, one name, one value 
of any type; or one node and 
one value of any type 

in tree set node of given name to given value; error 
if node of that name not defined; or set value of 
given node 

(set (ins (new) alfa +2.0) alfa -99.0) = (tree alfa -99.0), 
(as t (ins (new) alfa +2.0) (do (set (root (t)) +99.0) (t))) = 
(tree alfa +99.0)

one tree and one name; or 
one node of tree 

get value from named node in given tree; or get 
value of node  

(as t (ins (new) alfa +2.0) (get (t) alfa)) = +2.0, (as t (ins 
(new) alfa +2.0) (get (root (t))))
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (root (t)))) = (node b +2.0)
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (frst (t)))) = (node a +1.0)
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (last (t)))) = (node c +3.0)
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (left (root (t))))) = (node a +1.0)
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (rght (root (t))))) = (node c +3.0)

next node in tree after given node or (void) if current 
node is last one 

(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (next (root (t))))) = (node c +3.0)

previous node in tree before given node or (void) if 
current node is first one 

(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (prev (root (t))))) = (node a +1.0)
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (vlue (root (t))))) = +2.0
(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c 
+3.0) (tree (root (t))))) = (tree a +1.0 b +2.0 c +3.0)

a tree that is defined in treep at the beginning of 
computation; one can use this tree to store 
information throughout all computation; this is to 
hold data that must be accessible all the time 

(do (ins (main) a +1.0) (ins (main) b +2.0) (ins (main) c 
+3.0) (main)) = (tree a +1.0 b +2.0 c +3.0)

read one piece of data from stdin; data can be 
number, name, text, left or right parenthesis, space, 
tabulator, new line char, or void on the end of file 

(read)+2.0 = +2.0, (read) +1.0 = (spac), (do (read) 
(read)) "beta" = "beta"

one value of any type that 
read returns 

cancels last "read" call; treep can remember only 
one such value 



wrte writes data to stdout; outputs nothing for (void) (wrte "Hello World!") = "Hello World!"

dump one text (dump "Hello World!") = Hello World!

time  none number of seconds since epoch  (time) = +1318432558.0
repr one number (repr (time)) = "2011-10-12 17:17:43"

pars one text  (pars "1999-01-01 12:34:56") = +915190496.0

rand none random number in range from 0.0 to +1.0 (rand) = +0.32514742745934555
iden one name uniqe identifier starting with given name (iden My_Id) = My_Id_20111012_172117_957613416
vers none version of treep (vers) = "2011-10-12"
void none value of type "void" (void) = (void)
spac none value of type "spac"; this is space (spac) = (spac)
tabu none vlue of type "tabu", this is tabulator (tabu) = (tabu)
line none vlue of type "line", this is new line character (line) = (line)
lpar none this is value of type "lpar", this is left parenthesis (lpar) = (lpar), (wrte (lpar)) = (
rpar none value of type "rapr", this is right parenthesis (rpar) = (rpar), (wrte (rpar)) = )
info (info +2.4 alfa "a\"b\\c") = +2.4alfaa"b\c

exit one boolean (exit (no)) = failure, (exit (yes)) = success

one value of any type that 
read returns 

writes to stdout contents of text (without quotes, 
unescaped) 

ISO representation of time given as number of 
seconds 
parse text as ISO date format and return number of 
seconds 

any number of values of any 
types 

write information about values on stderr; texts are 
output without quotes and unescaped 
exits computation with success for (yes) and failure 
for (no) 


	Arkusz1

