Function

Parameters

Description

Examples

if

any number of pairs boolean
and value (condition, value for
true), and last value (when all
conditions false)

evaluates condition; if true, then evaluates following
expression; if false then skips expression, and
evaluates following condition; if all conditions fail
then evaluates last expression

(if (yes) +1.0 +2.0) = +1.0, (if (no) +1.0 +2.0) = +2.0, (if
(no) +1.0 (yes) +2.0 (no) +3.0 +4.0) = +2.0, (if (no) +1.0
(no) +2.0 (yes) +3.0 +4.0) = +3.0, (if (no) +1.0 (no) +2.0
(no) +3.0 +4.0) = +4.0, (if +12.0) = +12.0

as any number of pairs name and |computes values and assigns them to names; then |(as a +2.0 (mul (a) (mul (a) (a)))) = +8.0, (asa +2.0b
value, and expression to computes expression which can use these names |+3.0 (min (mul (a) (b)) (div (a) (b)))) =
compute as precomputed values +0.66666666666666667, (as +4.0) = +4.0
do any types, any number, at value of last parameter (do +1.0 +2.0) = +2.0
least one
df one name tell if function is defined (df add) = (yes), (df foobar) = (no)
is name and value of any type |tell if value has a type described by name (is numb +2.0) = (yes), (is numb "alfa beta") = (no)
inc one number number plus one (inc +2.0) = 3.0, (inc -2.0) =-1.0
dec one number number minus one (dec +2.0) = +1.0, (dec -2.0) = -3.0
add two numbers sum of these numbers (add +12.0 -3.0) = +9.0
sub two numbers difference between numbers (sub +19.0 +4.0) = +15.0, (sub +19.0 -2.0) = +21.0
mul two numbers multiplication of these numbers (mul +2.0 +3.0) = +6.0
div two numbers, second not zero |division of numbers (div +3.0 +2.0) = +1.5
rnd one number number rounded to integer (rnd +2.1) = +2.0, (rnd -2.9) = -3.0
flo one number biggest int not bigger than number (flo +2.9) = +2.0, (flo -2.1) =-3.0
cil one number smallest integer not bigger than number (cil +2.1) = +3.0, (cil -2.2) =-1.0
min none or two numbers mininimum representable positive number for no (min) = +0.00000000000000001, (min +1.0 -2.9) =-2.9
parameters or smaller number out of two
max none or two numbers maximum representable number or bigger number |(max) = +99999999999999999.9, (max +1.0 -2.0) =
out of two +1.0
ops one number number with opposite sign (ops -2.0) = +2.0, (ops 0.0)=0.0
abs one number absolute value of number (abs +1.0) = +1.0, (abs -2.9) = +2.9
zer none or one number 0.0 for no parameters or if number is zero (zer) = 0.0, (zer +2.0) = (no), (zer 0.0) = (yes)
pos one number is number positive? (pos +2.5) = (yes), (pos 0.0) = (no), (pos -2.0) = (no)
neg one number is number negative? (neg +2.0) = (no), (neg 0.0) = (no), (neg -2.0) = (yes)
equ two numbers are numbers equal? (equ +2.0 +1.0) = (no), (equ +2.0 +2.0) = (yes)
gre two numbers is first number greater than the second one? (gre +2.0 +1.0) = (yes), (gre +1.0 +2.0) = (no)
les two numbers is first number less than the second one? (les +2.0 +1.0) = (no), (les +1.0 +2.0) = (yes)
yes none boolean value "true", "yes" (yes) = (yes)
no none boolean value "false", "no" (no) = (no)
not one boolean negation of boolean value (not (yes)) = (no), (not (no)) = (yes)

and two booleans logical "and" of these (and (yes) (yes)) = (yes), (and (no) (yes)) = (no)
or two booleans logical "or" or these (or (yes) (no)) = (yes), (or (no) (no)) = (no)
numb one text get number from text, parse number from text (numb "0.0") = 0.0, (numb "-2.0") = -2.0
name one text or one node of tree |convert text to name or get name from node of tree |(name "alfa") = alfa, (name (root (ins (new) alfa +3.0)))
= alfa
text one number or one text text representation of number or name (text +2.34) = "+2.34", (text alfa) = "alfa"
leng one name or one text length of name or text, number of characters (leng alfa) = +4.0, (leng "alfa beta") = +7.0
same two names or two texts does these names or text look the same? (same alfa alfa) = (yes), (same "alfa" "beta") = (no)
bfor two names or two texts does the first one sort before the second one? (bfor alfa beta) = (yes), (bfor alfa aaaa) = (no)
aftr two names or two texts does the first one sort after the second one (aftr alfa aaaa) = (yes), (aftr alfa beta) = (no)
escp one text escape special chars in text (escp "a\"b\\c") = "a\\"b\\\c"
unes one text unescape special chars in text (unes "a\\\"b\\\c") = "a\"b\\c"
uppr one name or one text convert letters to uppercase (uppr Alfa) = ALFA
lowr one name or one text convert letters to lowercase (lowr "ALFA beta") = "alfa beta"
head one text or one name, and beginning of text or name (head alfa +2.0) = al, (head "alfa beta" +6.0) = "alfa b"
one number
tail one text or one name, and get ending of text or name (tail alfa +2.0) = fa, (tail "alfa beta" +6.0) = "a beta"
one number
join two names or two texts join names with underscore, or concatenate texts |(join alfa beta) = alfa_beta, (join "alfa" "beta") =
"alfabeta"
part two names or two texts does first one have a part as the second one (part alfa If) = (yes), (part alfa aa) = (no)
indx two names or two texts get index of part (indx alfa fa) = +2.0, (index alfa a) = 0.0
ptrn one text is text valid pattern (regular expression)? (ptrn "ab*c") = (yes), (ptrn "ab*[") = (no)
subs one text number of subespressions in pattern (subs "a(lf)a") = +1.0, (subs "a(I(f(a)))") = +3.0
mtch one name or text, one text, matches regular expression against text or name; |(mtch alfa "a.*a") = (yes), (mtch alfa "a(If|xy)a" +1.0) =
optional number number tells what subexpression to look at (if not |(yes)
present looks at whole pattern)
msta same as mtch starting index of matched text or name (msta alfa "a.*a") = 0.0, (msta alfa "a(If|xy)a" +1.0) =
+1.0
mend same as mtch ending index of matched text or name (mend alfa "a.*a") = +4.0, (mend alfa "a(lf|xy)a" +1.0) =
+3.0
new none new, empty tree (object) (new) = (tree ...)
ref two trees or two nodes of tree |does both reference the same place in memory? (ref (new) (new)) = (no), (as t (new) (ref () (1)) = (yes)
any one tree are there any nodes in tree? (any (new)) = (no), (any (ins (new) alfa +1.0)) = (yes)
qty one tree number of nodes in tree (qty (new)) = 0.0, (qty (ins (new) alfa +1.0)) = +1.0

def

one tree and one name

is node of given name defined in tree?

(def (new) alfa) = (no), (def (ins (new) alfa +1.0) alfa) =
(yes)

ins one tree, one name, and one |inserts into tree new node with given name and (ins (ins (new) alfa +1.0) beta +2.0) = (tree alfa +1.0
of any type value; returns tree; error if name already defined beta +2.0)
del one tree, one name deletes from tree node of given name; error if node |(del (ins (ins (new) alfa +1.0) beta +2.0) alfa) = (tree
not defined beta +2.0)
set one tree, one name, one value|in tree set node of given name to given value; error |(set (ins (new) alfa +2.0) alfa -99.0) = (tree alfa -99.0),
of any type; or one node and |if node of that name not defined; or set value of (as t (ins (new) alfa +2.0) (do (set (root (t)) +99.0) (t))) =
one value of any type given node (tree alfa +99.0)
get one tree and one name; or get value from named node in given tree; or get (as t (ins (new) alfa +2.0) (get (t) alfa)) = +2.0, (as t (ins
one node of tree value of node (new) alfa +2.0) (get (root (1))))
root one tree root node of tree (top of AVL tree) (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
+3.0) (root (1)))) = (node b +2.0)
frst one tree frst (leftmost) node of AVL tree (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
+3.0) (frst (t)))) = (node a +1.0)
last one tree last (rightmost) node of AVL tree (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) ¢
+3.0) (last (t)))) = (node ¢ +3.0)
left one node of tree left child of node or (void) if not defined (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
+3.0) (left (root (t))))) = (node a +1.0)
rght one node of tree right child of node or (void) if not defined (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
+3.0) (rght (root (1))))) = (hode c +3.0)
next one node of tree next node in tree after given node or (void) if current |(as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
node is last one +3.0) (next (root (t))))) = (node ¢ +3.0)
prev one node of tree previous node in tree before given node or (void) if |(ast (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
current node is first one +3.0) (prev (root (t))))) = (node a +1.0)
viue one node of tree value of given node (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
+3.0) (vlue (root (t))))) = +2.0
tree one node of tree tree the node belongs to (as t (new) (do (ins (t) a +1.0) (ins (t) b +2.0) (ins (t) c
+3.0) (tree (root (1))))) = (free a +1.0 b +2.0 ¢ +3.0)
main none a tree that is defined in treep at the beginning of (do (ins (main) a +1.0) (ins (main) b +2.0) (ins (main) ¢
computation; one can use this tree to store +3.0) (main)) = (tree a +1.0 b +2.0 ¢ +3.0)
information throughout all computation; this is to
hold data that must be accessible all the time
read none read one piece of data from stdin; data can be (read)+2.0 = +2.0, (read) +1.0 = (spac), (do (read)
number, name, text, left or right parenthesis, space, |(read)) "beta" = "beta"
tabulator, new line char, or void on the end of file
back one value of any type that cancels last "read" call; treep can remember only (as r (read) (do (read) (back (r)) (read)))+1.0+2.0 = +1.0

read returns

one such value

wrte one value of any type that writes data to stdout; outputs nothing for (void) (wrte "Hello World!") = "Hello World!"
read returns

dump one text writes to stdout contents of text (without quotes, (dump "Hello World!") = Hello World!
unescaped)

time none number of seconds since epoch (time) = +1318432558.0

repr one number ISO representation of time given as number of (repr (time)) = "2011-10-12 17:17:43"
seconds

pars one text parse text as ISO date format and return number of | (pars "1999-01-01 12:34:56") = +915190496.0
seconds

rand none random number in range from 0.0 to +1.0 (rand) = +0.32514742745934555

iden one name uniqe identifier starting with given name (iden My _Id) = My_Id_20111012_172117_957613416

vers none version of treep (vers) ="2011-10-12"

void none value of type "void" (void) = (void)

spac none value of type "spac"; this is space (spac) = (spac)

tabu none vlue of type "tabu", this is tabulator (tabu) = (tabu)

line none vlue of type "line", this is new line character (line) = (line)

Ipar none this is value of type "lpar”, this is left parenthesis (Ipar) = (Ipar), (wrte (Ipar)) = (

rpar none value of type "rapr", this is right parenthesis (rpar) = (rpar), (wrte (rpar)) =)

info any number of values of any |write information about values on stderr; texts are |(info +2.4 alfa "a\"b\\c") = +2.4alfaa"b\c

types output without quotes and unescaped
exit one boolean exits computation with success for (yes) and failure |(exit (no)) = failure, (exit (yes)) = success

for (no)

	Arkusz1

